Dr. Babasaheb Ambedkar Marathwada University Aurangabad Syllabus for Ph.D. Entrance Test (PET) 2016 Under Faculty of Engineering & Technology Subject: Electronics Engineering

Section - A: Research Methodology

Unit-I

Objectives of Research, Research Approaches, Significance of Research, Types of Research, Research Process, Criteria of Good Research, Defining the Research Problem, Selecting the Problem, Technique Involved in Defining a Problem, Methods and Tools in Research, Qualitative and Quantitative Studies, Inquiry Forms, Questionnaire, Developing a Research Plan, Literature review, Use of Library, Books and Journals, Use of Internet (Different useful sites), Patent Search

Unit-II

Data analysis, Types of data, Parametric and Non-parametric Data, Basic Concepts of Probability, Probability Axioms, Analysis and Treatment of Data, Measures of Central Tendency, Measures of Dispersions, Measures of Symmetry, Measures of Peakedness.

Unit-III

Regression Analysis – Simple Linear Regression, Multiple linear Regression, Correlation and Regression Analysis, Tests of Hypothesis and Goodness of Fit: Definition of null and alternative hypothesis, students 't' distribution, Chi-square distribution, F-test

Unit-IV

Interpretation and Report Writing: Meaning of Interpretation, Techniques of Interpretation, Significance of Report Writing, Steps in Writing Report, Layout of the Research Report, Types of Reports, Oral Presentation, Parts of Dissertation/Thesis writing, Different Styles of Dissertation/Thesis writing

Unit-V

Sources of procurement of Research Grants, Development of Research Proposal, Industry Institute Interaction, Writing a technical paper, Plagiarism and its Implications.

Dr. Babasaheb Ambedkar Marathwada University Aurangabad Syllabus for Ph.D. Entrance Test (PET) 2016 Under Faculty of Engineering & Technology Subject: Electronics Engineering

Section - B: Electronics Engineering

Unit-I: Networks, Signals and Systems

Network solution methods: nodal and mesh analysis; Network theorems: superposition, Thevenin and Norton's, maximum power transfer; Wye-Delta transformation; Steady state sinusoidal analysis using phasors; Time domain analysis of simple linear circuits; Solution of network equations using Laplace transform; Frequency domain analysis of RLC circuits; Linear 2-port network parameters: driving point and transfer functions; State equations for networks.

Continuous-time signals: Fourier series and Fourier transform representations, sampling theorem

Discrete-time signals: discrete-time Fourier transform (DTFT), DFT, FFT, Z-transform, interpolation of discrete-time signals; LTI systems: definition and properties, causality, stability, impulse response, convolution, poles and zeros, parallel and cascade structure, frequency response, group delay, phase delay, digital filter design techniques, Basics of Multirate Filtering.

Unit-II: Electronic Devices

Energy bands in intrinsic and extrinsic silicon; Carrier transport: diffusion current, drift current, mobility and resistivity; Generation and recombination of carriers; Poisson and continuity equations; P-N junction, Zener diode, BJT, MOS capacitor, MOSFET, LED, photo diode and solar cell; Integrated circuit fabrication process: oxidation, diffusion, ion implantation, photolithography and twin-tub CMOS process.

Unit-III: Analog Circuits and Digital Circuits

Small signal equivalent circuits of diodes, BJTs and MOSFETs; Simple diode circuits: clipping, clamping and rectifiers; Single-stage BJT and MOSFET amplifiers: biasing, bias stability, mid-frequency small signal analysis and frequency response; BJT and MOSFET amplifiers: multi-stage, differential, feedback, power and operational; Simple op-amp circuits; Active filters; Sinusoidal oscillators: criterion for oscillation, single-transistor and op-amp configurations; Function generators, wave-shaping circuits and 555 timers; Voltage reference circuits; Power supplies: ripple removal and regulation.

Number systems; Combinatorial circuits: Boolean algebra, minimization of functions using Boolean identities and Karnaugh map, logic gates and their static CMOS implementations, arithmetic circuits, code converters, multiplexers, decoders and PLAs; Sequential circuits: latches and flip-flops, counters, shift-registers and finite state machines; Data converters: sample and hold circuits, ADCs and DACs; Semiconductor memories: ROM, SRAM, DRAM; 8-bit microprocessor (8085): architecture, programming, memory and I/O interfacing.

Unit-IV: Control Systems

Basic control system components; Feedback principle; Transfer function; Block diagram representation; Signal flow graph; Transient and steady-state analysis of LTI systems; Frequency response; Routh-Hurwitz and Nyquist stability criteria; Bode and root-locus plots; Lag, lead and lag-lead compensation; State variable model and solution of state equation of LTI systems.

Unit-V: Communications

Random processes: autocorrelation and power spectral density, properties of white noise, filtering of random signals through LTI systems; Analog communications: amplitude modulation and demodulation, angle modulation and demodulation, spectra of AM and FM, superheterodyne receivers, circuits for analog communications; Information theory: entropy, mutual information and channel capacity theorem

Pulse Modulation ,Digital modulation schemes, amplitude, phase and frequency shift keying (ASK, PSK, FSK), QAM, MAP and ML decoding, matched filter receiver, calculation of bandwidth, SNR and BER for digital modulation; Fundamentals of error detection and correction codes; inter-symbol interference, Basics of TDMA, FDMA and CDMA.

Electrostatics; Maxwell's equations: wave equation, Plane waves, reflection and refraction, polarization, phase and group velocity, Transmission lines, S-parameters, Smith chart; Waveguides, Antennas: types and parameters; Basics of radar; Light propagation in optical fibers.